انت هنا الان: الرئيسية » القسم الاكاديمي
المقالات الاكاديمية والبحثية

On Musielak N-functions

    لتحميل الملف من هنا
Views  183
Rating  0
 عبد الحميد قحطان الطائي 10/03/2019 07:49:42
تصفح هذه الورقة الالكترونية بتقنية Media To Flash Paper

N-functions, Orlicz functions and Orlicz classes and Orlicz spaces generated by N-functions and Orlicz functions have been studied by many mathematicians as in [24],[17],[28],[18],[25],[3],[4],[5],[26],[11],[20],[9]. Musielak-Orlicz functions and Musielak-Orlicz spaces generated by Musielak-Orlicz functions have been originated and developed by [23],[22],[21] where f ? LMO (?,?,?) if and only if ??? MO(t,f(t))d? < ?. Their properties have been studied by [13],[16],[8],[14],[15],[16],[33] and their applications can be found in differential equations [7],[10], fluid dynamics [29],[31], statistical physics[1],integral equations [17], image processing [2],[6],[12] and many other applications [27]. So, because such increasingly importance to these concepts in the modeling of modern materials, we want to investigate properties, calculus and basic approx- imations of Musielak N-functions and Musielak-Orlicz functions and their Musielak-Orlicz spaces using the measure theory where this will help us to consider ??almost everywhere property, supremum, infimum, limit, convergence and basic convergence of Musielak N-functions, Musielak-Orlicz functions and Musielak-Orlicz spaces generated by them by functioning facts and results of the measure theory and getting advantages from that to consider these concepts. The concept of Musielak N -function M (t, u) is a generalization to the concept of N-function M(u), where M(t,u) may vary with location in space, whereas the Musielak-Orlicz function MO(t,u) is a generalization to the concept of Orlicz functions O(u), where MO(t,u) may vary with location in space. The Musielak-Orlicz function M O(t, u) is defined on ? × [0, ?) into [0, ?) where for ??a.e. t ? ?,MO(t,.) is Orlicz function of u on [0,?) and for each u ? [0,?),MO(.,u) is a ??measurable function of t on ? and (?, ?, ?) is a measure space [3],[15]. So, we are going to define the Musielak N -function M(t,u) on ?×R into R in similar way, that is, for ??a.e. t ? ?,M(t,.) is N-function of u on R and for each u ? R, M (., u) is a ??measurable function of t on ? and (?, ?, ?) is a measure space. The novelty to define the Musielak N -function M (t, u) by this way is to get benefits from the results of the measure theory and use them to consider properties, calculus, and basic convergence of Musielak N-functions and Musielak-Orlicz spaces generated by them and the relationship between Musielak N-functions and Musielak-Orlicz functions and their Musielak-Orlicz spaces generated by them where this will give us more flexibility to pick a suitable measurable set ? and then the functional ??? M(t,?f(t)?BS)d? defined on it as we will see in section 3. So, the paper is organized as follows. Definition of Musielak N-function, developing preliminaries results about the equivalent definition of Musielak N-function and studying continuity of Musielak N-function are
In this paper, the concept of Musielak N-functions and Musielak-Orlicz spaces generated by them well be introduced. Facts and results of the measure theory will be applied to consider properties, calculus and basic approximation of Musielak N-functions and their Musielak-Orlicz spaces. Finally, the relationship between Musielak N-functions and Musielak-Orlicz functions and thier Musielak-Orlicz spaces will be considered using facts and results of the measure theory too.
1
arXiv:1806.07310v1 [math.FA] 19 Jun 2018
introduced in section 2. Definition of Musielak-Orlicz space generated by a Musielak N-function, and using facts and results of the measure theory to study properties, calculus and basic approximation of Musielak N-functions and Musielak-Orlicz spaces generated by them in section 3. The relationship between Musielak N-functions and Musielak-Orlicz functions and Musielak-Orlicz spaces generated by them respectively using facts and results of the measure theory are introduced also in section 4. Examples of Musielak N-functions and Musielak-Orlicz functions that are not Musielak N-functions will be in section 5. The conclusion will be in section 6.

  • وصف الــ Tags لهذا الموضوع
  • Musielak N-function, Musielak-Orlicz function
مواضيع ذات علاقة

هذه الفقرة تنقلك الى صفحات ذات علاقة بالمقالات الاكاديمية ومنها الاوراق البحثية المقدمة من قبل اساتذة جامعة بابل وكذلك مجموعة المجلات العلمية والانسانية في الجامعة وعدد من المدنات المرفوعة من قبل مشرف موقع الكلية وهي كالاتي:

قسم المعلومات

يمكنكم التواصل مع قسم معلومات الكلية في حالة تقديم اي شكاوى من خلال الكتابة الينا,يتوجب عليك اختيار نوع الرسالة التي تود ان ترسلها لادارة الموقع :